Stability domains, substrate-induced conformational changes, and hinge-bending motions in a psychrophilic phosphoglycerate kinase. A microcalorimetric study.
نویسندگان
چکیده
The cold-active phosphoglycerate kinase from the Antarctic bacterium Pseudomonas sp. TACII18 exhibits two distinct stability domains in the free, open conformation. It is shown that these stability domains do not match the structural N- and C-domains as the heat-stable domain corresponds to about 80 residues of the C-domain, including the nucleotide binding site, whereas the remaining of the protein contributes to the main heat-labile domain. This was demonstrated by spectroscopic and microcalorimetric analyses of the native enzyme, of its mutants, and of the isolated recombinant structural domains. It is proposed that the heat-stable domain provides a compact structure improving the binding affinity of the nucleotide, therefore increasing the catalytic efficiency at low temperatures. Upon substrate binding, the enzyme adopts a uniformly more stable closed conformation. Substrate-induced stability changes suggest that the free energy of ligand binding is converted into an increased conformational stability used to drive the hinge-bending motions and domain closure.
منابع مشابه
Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase.
Using small angle x-ray scattering from solutions of yeast phosphoglycerate kinase, we have measured the radius of gyration of the enzyme both in the presence and in the abscence of ligands. We find that the radius of gyration decreases by 1.09 +/- 0.34 A upon binding both substrates MgATP and 3-phosphoglycerate to form the ternary complex. Smaller decreases, at the limit of the precision of th...
متن کاملAn Allosteric Signaling Pathway of Human 3-Phosphoglycerate Kinase from Force Distribution Analysis
3-Phosphogycerate kinase (PGK) is a two domain enzyme, which transfers a phosphate group between its two substrates, 1,3-bisphosphoglycerate bound to the N-domain and ADP bound to the C-domain. Indispensable for the phosphoryl transfer reaction is a large conformational change from an inactive open to an active closed conformation via a hinge motion that should bring substrates into close proxi...
متن کاملRoles of static and dynamic domains in stability and catalysis of adenylate kinase.
Protein dynamics, including conformational switching, are recognized to be crucial for the function of many systems. These motions are more challenging to study than simple static structures. Here, we present evidence suggesting that in the enzyme adenylate kinase large "hinge bending" motions closely related to catalysis are regulated by intrinsic properties of the moving domains and not by th...
متن کاملProbing Conformational Feature of a Recombinant Pyruvate Kinase by Limited Proteolysis
Pyruvate kinase is a key enzyme in glycolytic pathway that catalyzes the transphosphorylation between phosphoenolpyruvate and ADP to yield ATP and Pyruvate. Geobacillus stearothermophillus has a stable pyruvate kinase with determined crystal structure that composed of four separate domains. Given that limited proteolysis experiments can be successfully used to probe conformational features of p...
متن کاملPhosphorylation releases constraints to domain motion in ERK2.
Protein motions control enzyme catalysis through mechanisms that are incompletely understood. Here NMR (13)C relaxation dispersion experiments were used to monitor changes in side-chain motions that occur in response to activation by phosphorylation of the MAP kinase ERK2. NMR data for the methyl side chains on Ile, Leu, and Val residues showed changes in conformational exchange dynamics in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 50 شماره
صفحات -
تاریخ انتشار 2005